巖土工程師基礎考試:定積分


定積分
眾所周知,微積分的兩大部分是微分與積分。微分實際上是求一函數的導數,而積分是已知一函數的導數,求這一函數。所以,微分與積分互為逆運算。
實際上,積分還可以分為兩部分。第一種,是單純的積分,也就是已知導數求原函數,而若F(x)的導數是f(x),那么F(x)+C(C是常數)的導數也是f(x),也就是說,把f(x)積分,不一定能得到F(x),因為F(x)+C的導數也是f(x),C是無窮無盡的常數,所以f(x)積分的結果有無數個,是不確定的,我們一律用F(x)+C代替,這就稱為不定積分。
而相對于不定積分,就是定積分。
所謂定積分,其形式為∫f(x) dx (上限a寫在∫上面,下限b寫在∫下面)。之所以稱其為定積分,是因為它積分后得出的值是確定的,是一個數,而不是一個函數。
定積分的正式名稱是黎曼積分,詳見黎曼積分。用自己的話來說,就是把直角坐標系上的函數的圖象用平行于y軸的直線和x軸把其分割成無數個矩形,然后把某個區間[a,b]上的矩形累加起來,所得到的就是這個函數的圖象在區間[a,b]的面積。實際上,定積分的上下限就是區間的兩個端點a、b。
我們可以看到,定積分的本質是把圖象無限細分,再累加起來,而積分的本質是求一個函數的原函數。它們看起來沒有任何的聯系,那么為什么定積分寫成積分的形式呢?
定積分與積分看起來風馬牛不相及,但是由于一個數學上重要的理論的支撐,使得它們有了本質的密切關系。把一個圖形無限細分再累加,這似乎是不可能的事情,但是由于這個理論,可以轉化為計算積分。這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內容是:
若F'(x)=f(x)
那么∫f(x) dx (上限a下限b)=F(a)-F(b)
但是這里x出現了兩種意義,一是表示積分上限,二是表示被積函數的自變量,但定積分中被積函數的自變量取一個定值是沒意義的。雖然這種寫法是可以的,但習慣上常把被積函數的自變量改成別的字母如t,這樣意義就非常清楚了:
Φ(x)= x(上限)∫a(下限)f(t)dt
牛頓-萊布尼茲公式用文字表述,就是說一個定積分式的值,就是上限在原函數的值與下限在原函數的值的差。
正這個理論揭示了積分與黎曼積分本質的聯系,可見其在微積分學乃至整個高等數學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理。
編輯推薦:
最新資訊
- 2025年巖土工程師基礎知識點:地面沉降2025-09-10
- 2025年巖土工程師《基礎知識》考點:基坑圍護設計2025-09-01
- 2025年巖土工程師《基礎知識》考點:監測點要求2025-08-22
- 2025年巖土工程師《基礎知識》考點:砌體工程2025-08-11
- 2023年注冊巖土工程師基礎考試資料2024-09-20
- 2024年度全國注冊土木工程師(巖土)專業考試所使用的標準和法律法規2024-08-12
- 注冊巖土工程師備考要趁早 雙11好課限時優惠!直播間更有返現抽獎~2023-10-31
- 雙11預熱火熱進行中!超值好課助力你巖土工程師備考2023-10-31
- 2023年注冊巖土工程師基礎考試資料2023-09-22
- 2023年注冊巖土工程師基礎考試備考資料2023-09-18